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PROXIHATE LINEAR PROGRAMMING:
AN EXPERIMENTAL STUDY OF A MODIFIED SIMFLEX ALGORITHM
FOR SOLVING LIiTAR PRIGRAMS WITH INEXACT DATA

F. J. Could

1. Introduction

In recent years linear programming has become an enormously important and
widely used tool for solving a variety ol problems encountered in the practice
of operations rasearch. The original Simplex method (which we henceforth refer
to as the ordinary method) as presented by Dantzig [2] is a robust algorithm
which comprises the basic architecture of many commonly used linear program-
ming codes. For other early contributions, see Charnes [1] and Dantzig,0rden
and Wolfe [3]). Prominent empirical studies, authored by Wolfe and Cutler (6],
and Kuhn and Quandt [4], have compared and reported upon certain variants of
the ordinary methed. These reported results concern the effects of alternative
rules for such features as choice of the pivot element, choice of the f~rm of
the inverse, choice of the phase 1 procedure, etc. Aun advanced exposition of
various extensions appears in Orchard-Hays [5].

At the present time, though the ordinary Simplex method is considerabi-
efficient, it is nevertheless true that efforts to solve large problems are
typically expensive, and new fronticers in linear prugramming can be identified

with attempts to hasten convergence to optimal solutions of such problems. In

1 Department of Statistics and Curriculum in Operations Research and Systems
Analysis, University of North Carolina at Chapel Hill. This work was sponsored
in part by the Office of Naval Research, Contract No. N00014-67-A-0321-0003.
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this paper we explore a particular approach to achieving greater efficiency for
large scale problems. In particular, a new variant of the ordinary Simplex
method 1s proposed as a possible algorithm for solving a newly defined class
of large inexact problems.

Ar a starting point, we note that in linear programming applications it is
not highly unusual for the aata of the problem to be inexact. There are many
causes for imprecision of data. Some classes of real world problems in fact
appear to be impervious to the analyst's most ponderous efforts to cast them
into a precise optimization model. Such problems often represent large scale
decision models of systems with a highly diffuse and even tentative or specu-
lative structure. The purpose of the modzl is frequently to enable a decision
maker to gain insight for purposes of gross planning, explore tradeoffs, and
merely improve rather than gain optimality. The very notion of sharp optimi-
zation may be a maéter of forensics - at least within the limits on the pre-
cision of the data. Linear programs of this nature might descriptively be
dubbed as "proximate linear programs”. In spite of this special quality of
imprecision in many of our models, and in spite of its inevitable accentuation
with the growing interest in social and urban problems, the prepotency of the
engineering disciplines has continued to almost completely shape the mode of
inquiry in rigorous operations research. Looking at a special cless of large
scale imprecise problems - linear programs with tolerances in some of the
data - it is the objective of this study to attempt to develop an algorithm
which might intelligently recognize and exploit the special structure afforded
by inexact data. In short, it was hoped that an algorithm could be developed
which would tend to be more efficient than the ordinary Simplex method when
the problem data are inexact, and which would reduce to the ordinary method

when the data are precise,
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To define the goal more explicitly, assume that the right hand sides of
the given problem are known only within certain user specified tolerances. Let
€ be a vector and let the implied right hand side windows be denoted by
b ¢t e, All other problem data are assumed to be exact. Our goal, then, is to
develop an efficient algorithm for solving the proximate problem: find a non-

negative x* such that, for some b in the rectangle [b-¢, B+cl,

(1) Ax* s b, and

(11) ch* 2 ch for every nonnegative x such that Ax < b.

It has been our experience that optimization theorists tend to have dif-
ficulty in catching the unfamiliar flavor of this problem. Analysts have an
irresistable tendency to be greedy, and the typically encountered question is,
"Why not use the right hand side § +¢ and get the maximum possible return?"
The point here is that in thegroumd rules for the model under consideration
the right hand side is not a policy variable under the analyst's control. It
is an exogenous “"fuzzy" parameter, and the value b + € 1is no more worthy of
consideration than any other value in the rectangle [b-e, ' +e]. Consequently,
we propose an effort which capitalizes upon ignorance. We wish to solve the
linear program with the assumptica of some underlying b e [b-¢, b+e], with
indifference as to which one, with an algorithm which hopefully can economize
on consumpticn of computer time.l The algorithm proposed in this paper 1s
heavy handed in the sense that it relies vpon wall known ideas. It is a modi-

fication of the ordinary Simplex method which reduces to the latter when all

1 There may be other immediate applications for such an algorithm as
opposed to direct attack of an imprecise problem. For example, suppose the
ultimate objective of a study is to do a sensitivity analysis over a range of
right hand sides. The proposed algorithm could generate a fast optimal
solution for some right hund side in the range. Post optimality analyses can
then be done. See the appendix for other possible applications.
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tolerances are zero (i.e., when the right hand side data are exact). It is
not possible at this writing to state whether or not the objective of increased
efficiency has been realized with any generality over many classes of pro-
grams, Initial computational results indicate |

(1) the method appears to differ insignificantly (in terms of compu~
tation time) from the ordinary Simplex method for A matrices of size
25 x 25, with tolerances up to *30%,

(ii) With A matrices of size 100 x 100, 200 x 150 and 100 x 200,
when the Simplex method is applied to Ax < b, and when the modified method
is applied tc Ax < b, b-e < b < b+e, there are obvious differences in compu~
tation time. With tolerances (e) of roughly 30% the modified method
appears to reach optimality in 30 to 70 per cent of the amount of time taken
by the ordinary method, the realized reductions being dependent upon the
sparsity and the percentage of negative coefficients in A. In this case,
objective values between Simplex optimality and modified optimality tend to
differ relatively by average amounts of 2 to 10 per cent,

These results and others are sresented in detail in the final section of
the paper. It will be obvious that the modified method requires, on the
average, far fewer pivots than the ordinary Simplex algorithm. However, each
pivot requires more work. It tentatively appears that performance of the me-~
thod improves with problem size, is better for positive A matrices, and is
not helped by sparseness. It should be stated that while our computational
experience is at present far too limited to draw any conclusions, there would
seem to be adequate justification for further empirical inquiry into the use-
fulness of the modified method, expecially as regards the performance on
large problems. Also, theoretic possibilities exist for allowing tolerances
in the otlier data of the problem, for improving phase 1, for further improving

or modifying the proposed technique for tolerances in the right hand sides
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(e.g., building in a procedure for equality constraints), and for applying the
proposed technique to other contexts. Several such applications are discussed
in the appendix to this paper.
It may be helpful at the outset to make a rvough descriptive comparison
between the method to be advanced and the ordinary Simplex method. Consider

the polyiope given by Ax < b.

0 X 2 0, and the larger containing polytope

given by Ax = b x 2 0. These two polytopes define the proximate problem

2,
of interest. In ouv: context, given a mean for the right hand side interval,

say b, and given a vector of tolerances, say €, we shall have

b, = b-e £ b < b+e = b,. We begin with a phase 1, if necessary, on the poly-
tope Ax < bl’ x 2 0, in order to find an initial extreme point, say EO'
Beginning at EO’ the ordinary Simplex method would change basis by ex-

changing 2 columns. The column to be entered distinguishes an edge. The
column to be removed is chosen in such a way that, speaking geometrically,
there is a motion along the distinguished edge from E0 to an adjacent ex-
treme point El. In the modified method one willi also change basis by ex~-
changing 2 colurms. The column to be entered is chosen as in the ordinary
Simplex method, thus distinguishing the same edge. (A criterion other than
the ordinary entry criterion could be used.) However, the remove colummn is
not necessarily chosen so as to step to an adjacent extreme point. Rather, it
is chosen according to the criterion: Take as large a step (along the dis=-
tinguished edge) as possible to a new basic solution with the following
proparties
(1) the activities xj, ji=1,...,n must remain nonnegative
(11) the new solution may be infeasible with respect to any subset of the

right hand sides by;, but not with respect to any of the right hand

sides b,,; that is, the new solution may violate some of the con-

straints with right hand side b,,, and hence lie outside the poly-

tope Ax < by, x 20, but it must not be outside the polytope
Ax s b x 2 0.
20



6
(In general, such a basic solution will lie past the extreme point adjacent to
EO' Consequently, we achieve greater increase in the objective function.) At

this new basic solution, the violated b right hand sides are translated to

14

bZi values. We then are at an extreme point, say @, of the polytope

%
x, £ b,., ie¢ N
j=1 ij 73 1i 1
?
a., x, < b,,., ieN
j=1 ij 7j 21 2
Xx 2 0

where N2 indexes the constraints which have been assigned the new right hand

A
side value bZi' Beginning, then, from &€, the same method is repeated to
A

obtain a new point £ which will be an extreme point of some (possibly new)

polytope. At each extreme point the sets N1 and N2

quired. Initially, at point EO’ in the case where all constraints have tol-

are updated as re-

erances, the set Nl indexes all the constraints and N2 is empty. (The

procedure, however, will allow some of the constraints to be exact. If they
are all exact, the method reduces to the ordinary Simplex method.) As the al-
gorithm repeats, the indices tend to transfer from the set Nl to the set

NZ. At some stages the sets may remain thc same. Computational experience

indicates that large transfers from N to N tend to occur early in the

1 2
game as opposed to later. Also, as expected, larger tolerances encourage
larger transfers and better performance for the modified method., Figure 2

provides a sketch of the geometry of the new method.



2. Notation

Let A be an m x n matrix with columns

in Rm. ¢ in R"

Pl, PZ’ cees Pn. Let b be
» and let ¢ denote a given nonn:gative m-~vector of toler-

ances (for example, the components of € may be given by e = .2051)- The

problem to be solved is
P: find nonnegative x* ¢ R© such that for some b ¢ [b-¢, b+el
(i) Ax* < b, and

s T T
(i1) ¢ x* » ¢'x for every x > 0 such that Ax < b.

Any such x* will be called an optimal solution to P.

Let X = {1,2,...,n} denote the indices of the activities and let

S = «n+l,...,n+tm} be the set of slack indices. Let the fuzzy slacks be in-
dexed by F = {i¢S: “i-n > 0}, and let the exact slacks be indexed by

E = S-F. let b, = b -, b, = b+ ¢, and let R be the nonnegative
m-vector given by £ = b2 - bl = 2e.

A
Let A denote the A matrix augmented in the usual way with an m X m

A

iclo i : i ) 1 + . .

identity matrix and denote the last m columns of A as Pn+l"' ,Pn+m A
P

s Poy cney .
Il 12 1m

Corresponding to each basis B will be a point in R" with basic coordinates

A
buasis, say B, will correspond tc m columns of A, say P

x. = (X, ,X. ,...,%. ). JNonbasic coordinates are always assigned the value

B
zero. Also, corresponding to each basis, D, is a tableau with rows indexed

1

froo 1 to =~ r 1 and ¢oluins indexed from 0 to m+ n. The entries of

the zero column of the tabloau corresponding to B arve defined by ij =X
3

j=1,...,m; The entries in the remaining columns, excluding

.
*w1,0 = s *m°

the last rcw, are given by the cocfficients in the expressions

xij

Pj = ET-J xij PI s = 1,...,n+ m The last row of the tableau, excluding
i

Nm+l‘0’ consists of the usual reduced costs.
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In the method to be described, as in the ordinary Simplex method, a

basis B will be replaced with a basis g by a simple exchange. That is,

some vector PI (corresponding to the rth row) is replaced by a vector
T
Pe. Thus, the new basis ﬁ is given by Pf s BLos e Pf s, Wwhere fr = e
I
2
and fj = Ij for j # r. It will be conven%ent fo let I 'denote the set

{Il,...,Im} of indices of a current basis B, and to let R, for ke i,
denote the row of the current tableau such that kaO =X Thus, wve have

the notational relations

j (1.e., %, = ij)’ je{l,...,m}

'_?)
(]

3 '
IR. = j (i.e., Xe o = xj), j eI
b 3
Finally, the sets Jl and Jz will denote "ecurrent partitions' of the
set S (i.e., Jl U J2 =S, J1 n J2 = ¢). The sense of "current partition"

will become clear in the sequel, for we shall be interested in problems of the

form
[ max ch, subject to
n
(1) ‘jzl aij xJ + Xpg = bli’ n+1ice Jl
n
z a1j xj + X4 = bZi’ n+1c¢ J2
i=1
\ x 2 0.




3. The Algorithm

The modified method, flow charted in Figure 1, can be described in 9

steps.

1. Inittal Step. Set J, =E, J

2 = F. Do a phase 1 on (1) to obtain an

1
initial feasible basis B and corresponding basic feasible solution x.

GO TO 2.
2. If all reduced costs are nonpositive, TERMINATE. Otherwise, choose an
enter column, e, as in the ordinary Simplex method, to be one which has a

maximum reduced cost. Define el and Tl as follows:

8, = min [x./ HEPN > 0] = =x./x , t € T,.

1 jeI 3 ije Rje t Rte 1
That is, T1 denotes the set of basic indices which tie for the determination
of 61.
GO TO 3.

3. If T1 < Jl, set i =2 and GO TO 4. Otherwise, select an index

Ir € Tl, obtain a new basis ﬁ by replacing PI with Pe, and perform a
r

normal pivot operation on the tableau, including an ordinary transformation

of the values XjO’ j=1ly...,m.
Then GO TO 2.
4, Define 91 and Ti as follows:
9, = min [x,/x : X >0] = x//x , t eT,.
i i-1 3 Rje Rje t Rte i
jel - UT
p=1 P
That is, Ti denotes the set of basic indices which tie for the determination
of 61. If Ti fi J2 n F=2¢ then GO TO 5. Otherwise

GO TO 9.
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. 1-1 .
5. 1If 6, s min[(xj+6j-n)/xkje' i e Up“1 Tp], thea let i =1 4+ 1 and

GO TO 6., Otherwise,

GO TO 9.

6. If Ti-l AnE=4¢, CGOTO 7. Otherwise,

GG TO 9,

7. If Ti-l nX=¢, GO TO 8. Otherwise,

GO To 9.

8. 1If U;;i T, # I, GO TO 4. Otherwise,

GO TO 9.

9. Let 3 = 61_1 = xIr/xre = xrolxre for some Ir € Ti—l' Replace PIr

with Pe to obtain a new basis. The set of new basic indices is

1 - {Ir} u {e}. Obtain new values of the new ..asic variables from the

expressions
A i-2
xj - exR e’ jeI- U T
3 1. P=1
@ % = %y exR e ¥ BJ-n’ je U Tp
) 3 p=1
6, J = e.

A
As always, the nonbasic x are set equal to zero. The new tableau values

3

ij’ j=1,...,m are given by xjo = QI as determined from (2). Transform
k|

the remainder of the tableau by an ordinary pivot operation. Update the sets

J, and J, according to

1 2
i-2
J = J. - U T
1 1 p=1 P
i-2
J2 = J2 v (UT).
p=1
GO TO 2,
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Remarks on the Algorithm:

(1) Note that in step 5 the subscript j ~ n 1is positive since
(U;:i Tp) N X = ¢. This equality holds because the only way to enter step 5
is from step 4 and the ouly way to enter step & is from step 3 or step 8. The

route 3+ 64> 5 4implies i =2 and T, ¢ J Hence, T, n X = ¢. The

1 1°
route 8 > 4 + 5 implies i 2 3 and, from step 7, Tj 1" X=¢ for each }§
such that 2 < j s i -1,
(i1) By convention, for 1 < 3, the set U;:i Tp is empty. In step 9,
i-2
> - a « The
for 1 2 3, Up=1 Tp < Jl, but Ti_1 r2ed not be a subset of J1

latter assertion follows from steps 6 and 7. The first assertion is argued

as follows. Suppose step 9 is entered with 1 = 10. Then the tests in steps

4, 6 and 7 must have been passed for 1 = 10 -2,
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Phase 1 with RHS b1
Initialize J J

L 1' 72

e basis.
Check Optimality for Phase 2], Chang N
> Compute 01, Tl Define x as
in (2). Transform
Tableau. Up-
Normal Pivot| MO | YES date J, and J,.
Jl’ Jz are <= Tl c J1 ? r
not changed <
-— lCampute 9 Til
I' NO A
= 2 =
(Tri”‘_]z”F ¢>.> |8 =8, 4
YES 0
i-1 NQ
smin[(x B pe U Ta?\

Rpe 2=1 / 1}
1
i= i+1|
NO
(T2 "B 97)
l YES N0 ]
Ty nX=e7)

NO \\ YES

N

Figure 1: Flow Chart for Modified Algorithm
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4. Optimality Proof

Theorem: After each pivot operation on the tableau, as prescribed either

in step 3 or in step 9, the current entires j=1,...,m, along with

xjo,

the current values of Jl and J represent a basic feasible solution to

(1.

2’

Proof: It is clear that either in step 3 or in step 9 the basis B 1is
replaced with a new basis 8. The old basic indices I are replaced with the
indices £ =1 - {Ir} u {e}. We now show that the current entries X0 are
feasible, j = 1,...,m. By definition, this requires a proof that Qj 20,

J e f. Since the pivot operation in step 3 is an ordinary Simplex maneuver,

it suffices to consider the values ﬁ as prescribed in (2). From step 4,

3
replacing 1 with {1 -1,

A 1-2
0<§= ei_l = min [} /xR :jJel- U Té]
xR o 2 0 i je p=1
k|

From step 5, replacing i with i - 1,

A i-2
g = ei_l < min[}xj+8j_n)/xR o jJe VU T;}.

3 p=1
Thus
X, - fx, 2 0 jel- 162 T
3 Rje - } p=1
A 1-2
xj - eije + Bj-n =z 0, je pEl Tp

and 82 o0. Consequently X is nonnegative. Finally, given the current
values of Jl and Jys we show that X 1is a solution to (1) and hence, by

the above remarks, a basic feasible solution. We have,
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mEn X, P, = ) (x,-8 )P, + ) (x.-8 +8, )P, + Bp
j=1 33 {-2 xj xRJ.e j i-2 xj ije 3-n""3 e
jeI- U T Je UT
p=1 P p=1
= J xP. -8 J x P, +&F
jeI 33 je1 Rje 3 e
+ J e_ P = Y xP + § g P,
i-2 k-n "k je1 33 1-2 k-n"k
ke UT ke UT
p=1 p=1
Now let
b ] x.P,, b o= ) B, __P..
jer 33 g-2 Kk ok
ke UT
p=1
Hence
blj’ n+3je J1
bj =
sz, n+3je J2

where Jl and J2 are the values of the previous partition. In the expression

for b let n+ j = k. Hence

b = P
Zi-z s Fary?
ntj e UT
p=1 P
and
i-2
R + urT
~ BJ ntJe =1 P
b, = p=1
h|

0, if not.

We have therefore deduced that
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mn A ~
j=1 ijj - Q, where G = b + b. That is,
( 1-2
-+ -
blj Bj sz, n+jed n Ur ]
p=1
G l . i-2
= 4b,,, n+jeJ - UT
3 1j 1 p=l P
Lsz, n+ie 12.
From the remarks following the algorithm, Ué;i Tp [ Jl and therefore Q
simplifies to
i-2
b n+jeJ,~ UT
13’ 1
S p=1
h] i-2
sz, n+je J2 U { Urt ]. 0
p=1

Corollary: The algorithm terminates in an optimal solution to the problem

Proof: Each tableau represents a basic feasible solution to some problem
of the form (1). Termination can only occur when all reduced costs are non-
negative., From ordinary Simplex theory, this is an optimal tableau for the
problem of form (1) which is currently represented. This implies that we have

reached an optimal solution to problem P. a
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5. An Example

In Figure 2, a problem with 13 inequality constraints in 2 variables is

illustrated. The solid lines represent the b1 and b2 hulls, Each plane
is labeled with the index of the corresponding slack variable. At the initial

point, A, we have

>
[]

{1,2}

S = {3,4,......,15}

E = ¢
F = S
3 = 8
J, = ¢

The basic indices, 1, are given by {1 ¢ {3,4}}

e = 3
T, = {5}, T2 = {6}, T3 = {7}, T4 = {8}, Ts = {9}

i=5 6=06,.

I = 8¢T, =T 4

T 4 11

5 j=1,...,15 represents the point A, then point B is given by

the coordinates Qj’ j=1,...,15, where

A A .

xj = xj - eije, jel~ {5,6,7}

A A _

xj = xj - exR et 63-2’ j € {5,6,7}
A8 3

Xy .

A
At point B, the nonbasic components Qa and Xg each have the value zero.

Also at point B, we have

Jl = § - {5,6,7}

J, = {5,6,7}.
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Thus, point B 1is a basic feasible sclution to the problem

max c,X, + Cy¥ys subject to

2
Y oa,.x, +x = b.., ieS -~ (56,7}
P N e 11

2

jzl aijxj + Xpi = bZi’ i=5,6,7

xj 20, j =l,2,-.-,15-

From point B the modified method takes us to point C, with e = 4,
Ir =12, 1i=235, § = 64. It is seen that point C 1s an optimal solution
to the proximate problem. It can be seen that point ¢ 1is an exact solution,
i.e., an optimal basic feasible solution, to the problem

max clxl + Cy¥ys subject to

2
) 3% + X = b i = 3, 4, 8, 12, 13, 14, 15.

This hull is sketched in Figure 3.



18

11

15

FIGURE 2: Modified Method Pivots from A to B to C
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FIGURE 3:

The Solutions Space Corresponding to the Final Values of Jl’ J2
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6. HWumerical Experiments

In tiis section, we report the outcome of comparisons between the modi-
fied method and the ordinary method on 131 problems. All runs were performed
on the IBH Model 370/165 Computer. The experiments involved randomly gener-
ated data with A matrices of four sizes: 25 x 25, 100 x 100, 200 x 150,
and 100 x 200. Table I summarizes the input data, where D is a random
number between 0 and 1. In all cescecs the objective function coefficients
were given by ¢ = 15 + 10D. The right hand side for the ordinary Simplex
runs is denoted by the vector b, and the ordinary runs are designated in
Table I by ¢ = 0. These runs were performed on an in-house all-in-core full
tableau code employing the usual maximum reduced cost criterion for the choice
of enter vector. As a validity check on the in-house code, identical problems
have been run on MPS, the TBM linear programming package, with identical re-
sults to at least 5 decimal places. The modified Simplex algorithm, as elab-
orated in Section 3, was programmed as a special option of the in-house code.
By the choice of test problems, as seen in Table I, an initial feasible basis
of full slack was available for all runs. It was therefore necessary to con-
sider only phase 2 and all reported results are based on starts from the initial
full slack basis. The test problem characteristics were chosen in such a way
at to explore the effects of

(1) the size of A

(i1) the dispersion of the a,,'s

ij
(111) the percentage of negative aij's
(iv) the percentage of zeros in A.
In Table I, Pz denotes the percentage of zeroes in A, These were randomly

assigned to entries in A and remaining entries were then drawn from the

appropriate interval. For each problem type, as defined by a row of Table I,
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5 randomly generated problems were run, with the exception of the 200 x 150

case. For each of these latter problems only 3 random tests were conducted.

The results are presented in Table 1I, where

MT = nmean computation time in seconds
MI = mean number of iterations
R = mean computation time for modified Simplex divided by mean

computation time for ordinary Simplex.

100|085 - oMl

ERROR = the mean value of ORS , Wwhere
OBS = optimal objective value obtained with ordinary Simplex (right
hand side &)
0BM = optimal objective value obtained with modified Simplex (given the

appropriate tolerance about b).
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TABLE 1: TEST DATA

Run Dim. of A a b € Pz (%) b b

13 1 2
1 25 x 25 .01 + 1600D 23,490 ) 0 ——— ——
2 " " 23,053 .15 § 0 20,000 26,511
3 " " 23,490 .31 6 0 16,200 30,750
4 100 » 100 .0l + 500D 23,490 0 0 —— ——
5 " o 23,053 ,15 b 0 20,000 26,511
6 " " 23,450 .31 % 0 16,200 30,780
7 " " 23,912 .43 b 0 13,630 34,194
8 n " 23,490 .80 b 0 4,698 42,282
9 100 x 100 .01 + 500D 23,490 0 25 ———— ——
10 " " " .31 b " 16,200 30,780
11 100 x 100 1 + 50D 23,490 0 0 —— ——
12 " " " 315 " 16,200 30,780
13 100 x 100 1 + 50D 23,490 0 25 —— ——
14 " " " 316 " 16,200 30,780
15 100 x 100 .01 + 2000D 23,490 0 0 _—— -_—
16 “ " n L3106 " 16,200 30,780
17 " n 11} 0 25 — - ——
18 " " " L1 6 " 16,200 30,780
19 100 x 100 -125 + 500D 23,490 0 0 —— ——
20 " " " 15 0 16,200 30,780
21 100 x 100 -125 + 500D 23,490 0 25 —— ——
22 " " " .31 b " 16,200 30,780
23 100 x 100 =-250 + 1000D 23,490 0 0 —_— —
24 " " " 31b " 16,200 30,780
25 200 x 150 1+ 598D 57,971+ Q \ ——— ——
14,493D
26 " " " 316 0 40,000+ 75,492+
10,000D 18,986D
27 100 x 200 .01 + 500D 23,490 0 _ 0 —— —
28 " " " A1 b " 16,200 30,780




!

Run

11
12

13
14

15
16

17
18

19
20

21
22

.15
.31

.15
.31
.43
.80

o ot (o2} [~a] oA NvaRe Ryl =N O

(=]

[on]

TABLE II:

204
83.5

151
54

23

TEST RESULTS

MI
25
18
10

350
149
57
32

239
73

333
47

242
77

346
240
75

321
153

252
95

335
152

394
75

470
69

R

-

1.08
1

.64
.40
.32
.24

.55

.33

.55

.39

.49

.65

.64

.65

———

.40

.35

ERROR (%)
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The most meaningful compairison between the modified method and the ordinary
Simplex method is in terms of computation time. On this basis, with respect
to a ceteris partbus analysis, the results in Table II suggest the following
observations:

1. Increasing the tolerance appears to considerably increase the per-
formance of the modified method, without introducing great relative error in
the optimal objective values (runs 4, 5, 6, 7, S).

2. For the small 25 x 25 problems, up tc a tolerance of +30%, the
ordinary method was superior to the modified method.

3, For all 100 x 100, 200 x 150 and 100 x 200 runs, the modified
method was superior.

4, For 100 x 100 matrices, the ordinary Simplex performance was inde-
pendent of dispersior on the aij's and of the percentage of negative aij's
(runs 4, 11, 15, 19, 23).

5. For positive matrices (such as runs 6, 11, 15), the modified method
gave its best performance, with a suggestion that tighter dispersion on the
a,.'s improves its efficiency. There is a strong suggestion (runs 20 and 24)

1j

that the presence of negative a,,'s damps the efficiency of the modified

1)
method and therefore, in view of observation 4 above, decreases its advantage
over the ordinary method. It should be noted that from the geometry of the
modified method it might be intuitively expected to perform best on a Bayes
hull.

6. The addition of zeros to the A matrix uniformly improved the ordi-
nary Simplex performance (compare the MT values in 4 with 9; 11 with 13; 15
with 17; 19 with 21).

7. The addition of zeros to the A matrix does not appear to influ-

ence the efficiency of the modified method (compare the MT values in 6 with

10; 12 with 14; 16 with 18, and 20 with 22), but, because of observation 6
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above, the zeros diminish the advantage of the modified method over the ordi-
nary method.

8. Runs 21 and 22, which in this size problem give the poorest relative
advantage to the modified method, tend to support observations 5 and 7. In
runs 21 and 22, the A matrix contained 25% zeros and about 18% negative
coefficients. With the zeros enhancing the ordinary Simplex performance and
the negativities dulling the modified performance the relative advantage (the

R wvalue) is only .7.
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Appendix

There are two possibly interesting special uses for the modified method
which we here briefly describe.

1. Suppose it is desired to obtain a dual feasible tableau for the prob-

.
lem max c x, subject to Ax < b, x 2 0. That is, we seek a basis B such

that, setting wT = ¢ TB“l

T
B , we have w A 2 cT and w 2 0, One can obtain

such a basis B by selecting an especially large tolerance (the geometric
distance between the inner and outer hull is the key factor) and using the
modified method to obtain fast convergence to some optimal solution to some
problem (e.g., run 8 in Tables I and II). The final basis will yield feasible
dual variables and the final tableau will be dual feasible for any right hand
side. If it were then desired to use the dual method one would begin with
the first column given by 371 5.

2, sssume for convenience that all constraints are normalized and sup-
pose it is desired to obtain a near optimal solution to the problem max ch,

subject to Ax < b x 2 0, within a prespecified objective value accuracy.

29
In particular, suppose we seek a feasible solution, say x,, such that

Axo < bz, X, 20, and cho < cTQ < chD + a for some specified value a,

A T
where x 1is a true solution to max ¢ X, Ax < b2’ x 2 0. Select a large

tolerance ¢ and let b = by~ €, b, =b-e. Usethe modified method to
obtain fast convergence to an optimal solution to some proximate problem, say

x*, with feasible basis B,. If B*-lb2 2 0, then the basic components of

1bz. Otherwise, one could proceed with the dual algorithm,

possibly modified for inexact data.

% are given by B,
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